3.777 \(\int (a+b \cos (c+d x)) (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^6(c+d x) \, dx\)

Optimal. Leaf size=114 \[ \frac{(a C+b B) \tan ^3(c+d x)}{3 d}+\frac{(a C+b B) \tan (c+d x)}{d}+\frac{(3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{(3 a B+4 b C) \tan (c+d x) \sec (c+d x)}{8 d}+\frac{a B \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

[Out]

((3*a*B + 4*b*C)*ArcTanh[Sin[c + d*x]])/(8*d) + ((b*B + a*C)*Tan[c + d*x])/d + ((3*a*B + 4*b*C)*Sec[c + d*x]*T
an[c + d*x])/(8*d) + (a*B*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((b*B + a*C)*Tan[c + d*x]^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.227083, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.184, Rules used = {3029, 2968, 3021, 2748, 3767, 3768, 3770} \[ \frac{(a C+b B) \tan ^3(c+d x)}{3 d}+\frac{(a C+b B) \tan (c+d x)}{d}+\frac{(3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{(3 a B+4 b C) \tan (c+d x) \sec (c+d x)}{8 d}+\frac{a B \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]

[Out]

((3*a*B + 4*b*C)*ArcTanh[Sin[c + d*x]])/(8*d) + ((b*B + a*C)*Tan[c + d*x])/d + ((3*a*B + 4*b*C)*Sec[c + d*x]*T
an[c + d*x])/(8*d) + (a*B*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((b*B + a*C)*Tan[c + d*x]^3)/(3*d)

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx &=\int (a+b \cos (c+d x)) (B+C \cos (c+d x)) \sec ^5(c+d x) \, dx\\ &=\int \left (a B+(b B+a C) \cos (c+d x)+b C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx\\ &=\frac{a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{1}{4} \int (4 (b B+a C)+(3 a B+4 b C) \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=\frac{a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+(b B+a C) \int \sec ^4(c+d x) \, dx+\frac{1}{4} (3 a B+4 b C) \int \sec ^3(c+d x) \, dx\\ &=\frac{(3 a B+4 b C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac{a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{1}{8} (3 a B+4 b C) \int \sec (c+d x) \, dx-\frac{(b B+a C) \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac{(3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{(b B+a C) \tan (c+d x)}{d}+\frac{(3 a B+4 b C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac{a B \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{(b B+a C) \tan ^3(c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.5755, size = 85, normalized size = 0.75 \[ \frac{3 (3 a B+4 b C) \tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \sec (c+d x) \left (8 (a C+b B) (\cos (2 (c+d x))+2) \sec (c+d x)+6 a B \sec ^2(c+d x)+9 a B+12 b C\right )}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]

[Out]

(3*(3*a*B + 4*b*C)*ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*(9*a*B + 12*b*C + 8*(b*B + a*C)*(2 + Cos[2*(c + d*x)])
*Sec[c + d*x] + 6*a*B*Sec[c + d*x]^2)*Tan[c + d*x])/(24*d)

________________________________________________________________________________________

Maple [A]  time = 0.047, size = 171, normalized size = 1.5 \begin{align*}{\frac{Cb\tan \left ( dx+c \right ) \sec \left ( dx+c \right ) }{2\,d}}+{\frac{Cb\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}}+{\frac{2\,bB\tan \left ( dx+c \right ) }{3\,d}}+{\frac{bB\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+{\frac{2\,aC\tan \left ( dx+c \right ) }{3\,d}}+{\frac{aC\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+{\frac{Ba \left ( \sec \left ( dx+c \right ) \right ) ^{3}\tan \left ( dx+c \right ) }{4\,d}}+{\frac{3\,Ba\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{8\,d}}+{\frac{3\,Ba\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{8\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x)

[Out]

1/2/d*C*b*tan(d*x+c)*sec(d*x+c)+1/2/d*C*b*ln(sec(d*x+c)+tan(d*x+c))+2/3/d*b*B*tan(d*x+c)+1/3/d*b*B*tan(d*x+c)*
sec(d*x+c)^2+2/3/d*a*C*tan(d*x+c)+1/3/d*a*C*tan(d*x+c)*sec(d*x+c)^2+1/4*a*B*sec(d*x+c)^3*tan(d*x+c)/d+3/8*a*B*
sec(d*x+c)*tan(d*x+c)/d+3/8/d*B*a*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.07738, size = 220, normalized size = 1.93 \begin{align*} \frac{16 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a + 16 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B b - 3 \, B a{\left (\frac{2 \,{\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C b{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="maxima")

[Out]

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a + 16*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*b - 3*B*a*(2*(3*sin(d*
x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x +
 c) - 1)) - 12*C*b*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.57776, size = 352, normalized size = 3.09 \begin{align*} \frac{3 \,{\left (3 \, B a + 4 \, C b\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (3 \, B a + 4 \, C b\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (16 \,{\left (C a + B b\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (3 \, B a + 4 \, C b\right )} \cos \left (d x + c\right )^{2} + 6 \, B a + 8 \,{\left (C a + B b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="fricas")

[Out]

1/48*(3*(3*B*a + 4*C*b)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*B*a + 4*C*b)*cos(d*x + c)^4*log(-sin(d*x +
 c) + 1) + 2*(16*(C*a + B*b)*cos(d*x + c)^3 + 3*(3*B*a + 4*C*b)*cos(d*x + c)^2 + 6*B*a + 8*(C*a + B*b)*cos(d*x
 + c))*sin(d*x + c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**6,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.5065, size = 410, normalized size = 3.6 \begin{align*} \frac{3 \,{\left (3 \, B a + 4 \, C b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \,{\left (3 \, B a + 4 \, C b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) + \frac{2 \,{\left (15 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 24 \, C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 24 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 12 \, C b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 9 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 40 \, C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 40 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 12 \, C b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 9 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 40 \, C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 40 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 12 \, C b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 15 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 24 \, C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 24 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 12 \, C b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="giac")

[Out]

1/24*(3*(3*B*a + 4*C*b)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*B*a + 4*C*b)*log(abs(tan(1/2*d*x + 1/2*c) -
1)) + 2*(15*B*a*tan(1/2*d*x + 1/2*c)^7 - 24*C*a*tan(1/2*d*x + 1/2*c)^7 - 24*B*b*tan(1/2*d*x + 1/2*c)^7 + 12*C*
b*tan(1/2*d*x + 1/2*c)^7 + 9*B*a*tan(1/2*d*x + 1/2*c)^5 + 40*C*a*tan(1/2*d*x + 1/2*c)^5 + 40*B*b*tan(1/2*d*x +
 1/2*c)^5 - 12*C*b*tan(1/2*d*x + 1/2*c)^5 + 9*B*a*tan(1/2*d*x + 1/2*c)^3 - 40*C*a*tan(1/2*d*x + 1/2*c)^3 - 40*
B*b*tan(1/2*d*x + 1/2*c)^3 - 12*C*b*tan(1/2*d*x + 1/2*c)^3 + 15*B*a*tan(1/2*d*x + 1/2*c) + 24*C*a*tan(1/2*d*x
+ 1/2*c) + 24*B*b*tan(1/2*d*x + 1/2*c) + 12*C*b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d